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Cortical neurons operate within recurrent neuronal circuits.

Dissecting their operation is key to understanding information

processing in the cortex and requires transparent and

adequate dynamical models of circuit function. Convergent

evidence from experimental and theoretical studies indicates

that strong feedback inhibition shapes the operating regime of

cortical circuits. For circuits operating in inhibition-dominated

regimes, mathematical and computational studies over the

past several years achieved substantial advances in

understanding response modulation and heterogeneity,

emergent stimulus selectivity, inter-neuron correlations, and

microstate dynamics. The latter indicate a surprisingly strong

dependence of the collective circuit dynamics on the features

of single neuron action potential generation. New approaches

are needed to definitely characterize the cortical operating

regime.
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Introduction
Cortical circuits are built of two main neuron classes —

excitatory and inhibitory — that comprise about 80% and

20% of nerve cells respectively. An intricate network of

synaptic connections links neurons within and across

cortical layers. Long-ranging inputs drive and modulate

activity in the local circuit, including afferent drive by
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specific thalamic nuclei and modulation by remote cor-

tical cells [1,2]. Recurrent excitation in cortical circuits is

believed to underlie the amplification of specific input

patterns and the generation of persistent activity. In view

of the large recurrently connected excitatory cell popu-

lation, feedback inhibition appears indispensable for sta-

bilizing recurrent cortical circuits. Recent functional and

anatomical studies demonstrated that inhibitory connec-

tions in the local cortical circuit appear in general strong

(see e.g. Ref. [3]) and dense [4–6]. This suggests that the

inhibitory population as a whole can provide a dense

‘blanket of inhibition’ as a prerequisite for the utilization

of recurrent excitation [7]. Over the past several years

dynamical models of cortical circuits started to reveal

unanticipated and counterintuitive roles of dominant

feedback inhibition.

As any mathematically formalized model, models of cor-

tical circuits have to strike a balance between idealization

and detail. Current experimental approaches harnessing

the ongoing progress in optophysiology, genetics and

connectomics are beginning to picture cortical circuits

in unprecedented detail. Substantial efforts in theoretical

neuroscience are dedicated to laying the foundations for

integrating and dissecting the emerging wealth of data.

No amount of detail, however, can be expected to offset

the need for idealization. Idealization — even counter-

factual idealization, that is the neglect of known fea-

tures — is required whenever the essential ingredients

of a phenomenon need to be identified or when a quali-

tatively novel type of behavior demands conceptual ad-

vancement. For such challenges the ultimate aim is not

realism but clarity, mathematical control, and the trans-

parent penetration of complex phenomena. Recent work

on the operating point of cortical circuits provides intri-

guing examples of paradoxical effects such as the sup-

pression of activity by withdrawal of inhibition and

excitation [8] or the emergence of response selectivity

in random networks [9��]. The emerging understanding

of such counterintuitive aspects of cortical operation

promises to guide cortical circuit models to a mature

balance of idealization and detail.

Balanced circuits, inhibition-stabilized
networks (ISNs) and paradoxical responses
Dominant feedback inhibition plays a central role in

virtually every dynamical model of cortical operation.

Prime examples are models exhibiting balanced states,
in which strong feed forward and recurrent excitation

are balanced by equally strong recurrent and feedback
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Balanced states robustly emerge in local circuits of inhibitory and excitatory neurons. Neurons in balanced networks are driven by residual input

fluctuations that result from the near cancelation of excitatory and inhibitory inputs (upper right). The balance of excitatory and inhibitory inputs is a

collective phenomenon and emerges from the recurrent interactions in the network. Balanced states were first found in sparse randomly connected

networks. Recent work demonstrated the emergence of balanced states also in structured and more densely connected circuits and revealed that

they actively suppress the occurrence of correlated activity. Cells in balanced networks robustly exhibit irregular and asynchronous activity patterns

(lower left).
inhibition [10,11] (Fig. 1). Under such conditions spiking

is driven by residual temporal fluctuations of net synaptic

input and as a result is temporally irregular and only

weakly correlated between cells. A related class of models

are ISNs [8,12] (Fig. 2). ISNs are defined by recurrent

excitation being so strong that runaway excitation cannot

be prevented by any fixed amount of inhibition and

stabilization can only be achieved if the activity of the

inhibitory neuron population dynamically tracks every

fluctuation in excitatory population activity. Balanced

networks are in general ISNs but not all ISNs generate

balanced states, strong input fluctuations and irregular

asynchronous firing patterns. Above a threshold strength

of recurrent excitation and inhibition, ISNs predict a

paradoxical response to an additional external drive

impinging on the inhibitory population (Fig. 2). One

may naively expect that such a drive increases inhibition

and reduces activity in the excitatory population by

disynaptic inhibition. In a strongly coupled ISN, however,

both activity levels drop leading to an effective ‘with-

drawal’ of excitation and a paradoxical reduction of the

level of feedback inhibition. Ozeki et al. recently found

that this paradoxical response apparently underlies the

phenomenon of surround suppression in cat V1 [8]. As the

suppression of activity by a simultaneous reduction of

excitation and inhibition in the local circuit seems hard to
www.sciencedirect.com 
explain in any other way, this phenomenon represents an

intriguing piece of evidence for an inhibition stabilized

operating regime in which excitation and inhibition are

strong and dynamically matched. While feedback inhi-

bition also appears strong in rodent sensory cortex, a

recent study reported evidence for the simpler scenario

of increased inhibition as the basis of surround suppres-

sion in mouse visual cortex [13]. Furthermore optogenetic

activation of interneurons in mouse visual cortex can

generate a wide variety of effects but so far has not

provided evidence for paradoxical responses [14,15].

Further work is needed to clarify the phenomenology

and determine whether similar or distinct mechanisms

mediate surround suppression in rodent, carnivore and

primate visual cortex.

Independent lines of experimental and theoretical evi-

dence further support a cortical operating regime of

strong feedback inhibition and recurrent excitation.

Experimentally, London et al. found that inducing an

additional spike in a single excitatory neuron in rodent

barrel cortex can trigger a substantial rate response in the

local circuit that indicates an intrinsically unstable level

of recurrent excitation [16]. Intracellular studies of layer

IV neurons in mouse visual and auditory cortex provide

direct evidence for the recruitment of strong, amplifying
Current Opinion in Neurobiology 2014, 25:228–236
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Inhibition-stabilized networks (ISNs) predict paradoxical responses beyond a threshold level of recurrent interactions. In ISNs recurrent excitation is so

strong that runaway self-excitation can only be prevented if the inhibitory population tightly tracks fluctuations in the activity of the excitatory

population. The schematic phase diagrams (left) indicates the occurrence of paradoxical responses in a section through the parameter space of a non-

balanced and a balanced two population network, a special case of an ISN. The balanced network phase diagram also illustrates that parameter tuning

is not required because balanced activity emerges from the network dynamics for an entire volume (grey) of parameter space. For strong recurrent

interactions both the activity of the excitatory and the inhibitory population drop when the inhibitory population is subjected to an increased external

drive (right, SR simple response, PR paradoxical response).
recurrent excitation [17–19] (discussed in Ref. [20]). In

addition, theoretical studies that constructed compre-

hensive models for the contextual modulation of

responses to grating stimuli in primate V1 ([21,22], see

also Refs. [23,24]) are converging to a inhibition domi-

nated local circuit structure. The same conclusion is

supported by a study that tuned detailed recurrent circuit

models to match the orientation tuning of subthreshold

and spiking activity in pinwheel centers and orientation

domains [25]. Finally, Persi et al. performed a compre-

hensive search for local circuit models that successfully

reproduce contrast response functions in primate V1.

They also conclude that cortical circuits without strong

feedback inhibition are unable to match experimental

observations [26].

Do visual cortical circuits operate in a
balanced state?
In an attempt to extend the study of ISNs toward defining

the operating regime of V1 circuits, Ahmadian et al.
recently studied networks of model neurons with expan-

sive nonlinear input–output relations [27�]. These net-

works, called stabilized supralinear networks (SSNs),

exhibit supralinear responses for weak inputs and sub-

linear and non-monotonic responses for strong inputs (see

also Ref. [26]). This crossover from supralinear to sub-

linear responses promises a novel theoretical account for a

wide range of normalization phenomena found in V1 [28].

Classical models of cortical circuits in the balanced state
Current Opinion in Neurobiology 2014, 25:228–236 
are known to behave distinctly different. In these models,

the condition of small average net input implies that the

firing rates of the neuronal populations depend linearly on

the external inputs. Ahmadian et al. therefore raised the

question of whether the observed response non-linearity

indicates that visual cortical networks are not operating in

a balanced state. Two recent studies, however, show that

response linearity is not a critical prediction of the

balanced state [29��,30]. In these studies Mongillio, Han-

sel and coworkers for the first time presented a consistent

treatment of balanced states in networks, in which synap-

tic inputs exhibit short-term plasticity such as synaptic

depression and facilitation. Because of short-term

plasticity the condition of small mean net input becomes

nonlinear in the population firing rates and assumes a

form that is similar to the equations that determine the

firing rates in nonlinear rate models of the type used in

[27�]. It is thus conceivable that a synaptic source of

nonlinearity within a balanced network could result in

similar normalization effects as predicted by a SSN.

Further studies are needed to conclusively examine these

alternative scenarios.

Feature selectivity and response
heterogeneity in random circuits
Recently Hansel and van Vreesweijk showed that

balanced states can lead to the emergence of sharp tuning

for stimulus features even in randomly connected net-

works [9��]. They examined randomly wired networks of
www.sciencedirect.com
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Randomly connected networks in the balanced state driven by a random projection from a population of orientation-tuned neurons can generate highly

selective responses. The total excitatory input to each neuron in the network is only weakly tuned. The balance of mean excitation and inhibition

emerging in the network, however, largely cancels the untuned mean input. As a result, the neurons input output function can generate highly selective

orientation tuning.
neurons receiving weakly orientation tuned net input as a

result of random wiring. The emergent balance in the

network, however, cancels the mean input and adjusts

the population activity such that output firing is tuned

as sharply as observed in V1 (Fig. 3). This study con-

stitutes an important contribution towards understand-

ing the operation of rodent visual cortex. In all rodents

examined so far orientation selective V1 neurons are not

organized into an orientation map but are arranged in an

interspersed layout (reviewed in Refs. [1,31] see also

Ref. [32]). Locally neurons are preferentially but not

exclusively connected to neurons of similar orientation

preference and receive inputs from cells exhibiting the

full complement of preferred orientations [33–35]. Thus

mature mouse V1 can be viewed as composed of inter-

mingled subcircuits that are partially but not completely

segregated (reviewed in Ref. [1]). So mouse V1 is

certainly not per se a random network. It remains,

however, an open question whether or not the observed

specificity contributes to response selectivity. Interest-

ingly, mature-like oriented receptive fields are observed

already at eye opening when the preferential connec-

tivity is not yet established [36]. This is consistent with

the finding of Hansel and van Vreesweijk that the

specific connectivity is not a necessary prerequisite
www.sciencedirect.com 
for the sharp orientation tuning. It is an important open

question which neuronal operations are generated or

enhanced by the selective excitatory connectivity in

mouse visual cortex.

Balanced circuit models typically exhibit highly hetero-

geneous response properties that result from random

variations in connectivity across neurons [10,11,37].

For instance, the balanced model for orientation tuning

in rodent V1 [9��] exhibits substantial heterogeneity in

orientation selectivity that is similar to the biologically

observed heterogeneity in mouse visual cortex [38].

Balanced network models also robustly predict the most

elementary kind of response heterogeneity: firing rate

heterogeneity. Firing rate distributions have been

examined in various cortical areas and appear to be

generally broad and skewed toward low firing rates

(reviewed in Ref. [39]). Roxin et al. recently presented

a systematic analysis of firing rate distributions in

balanced networks of neurons with expansive input–
output relationships. Under a wide range of conditions

these networks were found to robustly predict realisti-

cally broad firing rate distributions [40]. A slightly more

complicated analysis can be performed to characterize

the distribution of orientation selectivity in balanced
Current Opinion in Neurobiology 2014, 25:228–236
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circuit models [37]. Such analyses will facilitate the

quantitative comparison of balanced circuit predictions

and population measurements. While the experimen-

tally observed degree of response heterogeneity is con-

sistent with generic predictions of balanced state models,

biological response heterogeneity can in principle result

from a wide range of sources. Dissecting the predicted

response heterogeneity systematically should uncover

more specific signatures of the distinct mechanisms.

Correlations and network structure
Correlations between the activities of different cortical

neurons in a local circuit are on average relatively weak

with correlation coefficients of 0.1 and below [41,42]. The

classical models of balanced state networks are based on

sparse random graphs in which the number of neurons in a

population is much larger than the average number of

synapses which is itself a large number. Numerical stu-

dies of balanced networks of spiking neurons, however,

have for a long time indicated that a very sparse connec-

tivity is not a strict requirement for the emergence of

weakly correlated asynchronous states. Renart et al.
recently extended the theoretical treatment of balanced

networks to the case of dense connectivity, in which the

number of connections per neuron scales proportional to

the number of neurons in the population [43��]. They

showed that even with dense connectivity correlations are

weak and vanish in the large network limit. The basis for

this robust suppression of interneuron correlations is the

capability of the inhibitory and excitatory inputs to not

only cancel on average but also to track each other

dynamically, canceling a substantial fraction of common

input fluctuations [43��,44]. This feature seems to be a

general property of balanced circuit models but so far has

been analytically derived only for idealized networks of

binary neurons [43��].

Refined concepts for analyzing network generated pat-

terns of correlations in spiking neuron networks have

emerged over the past years. The transmission of input

correlations into spike output correlations has been

characterized for a diverse set of model neurons clarifying

the dependence of correlation transmission on parameters

of background input fluctuations, spike generation and

synaptic characteristics [45–51]. Simple threshold neuron

models apparently mimic correlation transmission in cor-

tical neurons surprisingly well [48]. Using theses

approaches recent studies have started to dissect self-

consistent patterns of inter-neuron spike correlations in

networks with random and structured connectivity [52–
55]. These studies are building a coherent mathematical

foundation for future analyses on how single neuron and

synaptic dynamics together with the circuit’s connectome

shape the structure and strength of emergent correlations.

Notably, they generally presuppose that the emergent

states are statistically stationary. Litwin-Kumar and

Doiron, however, discovered that introducing clustering
Current Opinion in Neurobiology 2014, 25:228–236 
motifs into balanced networks can lead to the emergence

of slow firing rate fluctuations that deviate from a station-

ary process [56�]. It is thus an important open question

how ubiquitous this phenomenon is and how structured

or random a network needs to be to spontaneously gen-

erate slow rate fluctuations [72].

Chaotic dynamics, temporal-decorrelation
and the bandwidth of neural population
responses
Neuronal circuit models in the balanced state are non-

linear high dimensional dynamical systems. They are

thus expected to evolve chaotically in time. The first

balanced circuit models in fact exhibited an extremely

strong form of chaotic dynamics in which trajectories

starting from similar initial conditions diverged faster

than exponential [11]. Recent analyses of balanced cir-

cuits of spiking neuron models have revealed that the

strength and nature of deterministic chaos can qualitat-

ively depend on the choice of single neuron model

[57,58,59,60��,61��]. Balanced networks in which recur-

rent inhibition balances an external drive exhibit

temporally irregular asynchronous spiking patterns.

The generated sequences of spikes and subthreshold

voltage fluctuations, however, can nevertheless be dyna-

mically stable such that the network returns to a unique

and invariant voltage trajectory and spike sequence after

small perturbations [57,58,59,61��] (Fig. 4). This stable

irregular spiking dynamics was first found in purely

inhibitory networks of pulse-coupled leaky integrate-

and-fire neurons (LIF), but appears to persist when

synaptic currents decay sufficiently fast and when some

amount of recurrent excitation is included [58,59]. By

contrast, balanced networks of exactly the same structure

but composed of units that explicitly model the process of

spike initiation exhibit irregular asynchronous activity

with chaotic dynamics such that perturbed trajectories

exponentially separate [60��,62]. The single neuron

instability underlying spike initiation that is neglected

in simple threshold neurons such as the LIF can appar-

ently substantially contribute to the divergence of

network state trajectories. These advances in the micro-

scopic characterization of spiking network dynamics have

started to provide new avenues for an information theor-

etical characterization of the repertoire of activity patterns

that large spiking circuits generate. Monteforte and Wolf,

for instance, were able to calculate the total entropy of

distinct spike sequences that a balanced random network

of LIF neurons can generate from a characterization of

the network’s phase space [61��]. Studies of temporally

driven balanced circuits (such as Refs. [62,63,73]) are

needed to clarify the relationship of different types of

chaotic dynamics and the representation of sensory infor-

mation in patterns of network activity. Studies of network

phase space organization have so far been performed

mostly in networks of simple pulse coupled neurons.

There are, however, no rigid limitations to generalizing
www.sciencedirect.com
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Figure 4
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The nature of collective chaos in balanced networks is sensitive to single neuron dynamics. The left panels represent the single neuron membrane

potential dynamics of the leaky integrate-and-fire neuron (a) and the quadratic integrate-and-fire neuron (d). The middle panels show spectra of

Lyapunov exponents (LEs) that characterize the divergence/convergence of state trajectories in the phase space of otherwise identical balanced

networks of these model neurons (b,e). Positive LEs demonstrate a chaotic dynamics in which trajectories exponentially diverge. Negative LEs

characterize the decay of perturbations in particular directions in phase space as indicated in the lower right scheme (f). In the LIF network all LEs are

negative demonstrating that the irregular firing sequences generated by the network are stable. The upper right scheme (c) summarizes the

geometrical properties of the basins of attraction of the different stable irregular firing sequences exhibited by the network. N is the number of neurons

in the network, and K is the mean number of synaptic connections (modifed from refs. 60,61).
the concepts and computational approaches to networks

composed of more complex neuron models as long as they

allow for an exact integration of the single neuron model

between spike events.

A high speed of signal propagation is one basic advantage

of asynchronous network states. In a large, asynchro-

nously firing neuronal population a subset of cells is

always close to threshold and thus ready to convey infor-

mation rapidly. In balanced networks the speed of popu-

lation responses is further increased by the strong net

synaptic interactions [10,11]. Balanced networks are thus

capable of rapid population responses even if the con-

stituent neurons exhibit pronounced low pass character-

istics. Recent experimental studies have started to

address the bandwidth of spike encoding in fluctuation

driven populations of real cortical neurons [64–68]. These

studies consistently report that population responses are

surprisingly rapid even in the absence of recurrent inter-

actions. Even in response to very weak stimuli, popu-

lations of pyramidal cells can change their firing rate
www.sciencedirect.com 
within less than a millisecond — at least an order of

magnitude faster than expected from their membrane

time constant [67]. Such rapid responses to weak stimuli

have been theoretically predicted for simplified neuron

models such as the leaky integrate-and-fire neuron, but

seemed to be absent in biophysically more realistic

models (see discussion in Ref. [67]). The biophysical

basis of the high bandwidth of neural population encod-

ing in the fluctuation driven regime is currently not

understood and calls for a reinvestigation of the basic

processes of action potential generation [69–71]. Further

theoretical work is needed to disentangle the relative

contributions of strong recurrent interactions and single

neuron bandwidth to the processing speed of cortical

circuits.

Conclusions
Many lines of current evidence indicate an inhibition

dominated operating regime of cortical circuits in which

recurrent excitation and feedback inhibition are strong

and dynamically matched. Counter-intuitive theoretical
Current Opinion in Neurobiology 2014, 25:228–236
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predictions such as the paradoxical response of ISNs

[8,12] or the emergence of orientation selectivity from

balanced random networks [9��] are contributing to our

understanding cortical circuit operation. Theoretical stu-

dies over the past several years have strongly expanded

the toolbox for a mathematically accurate and controlled

dissection of cortical circuit models in balanced and

inhibition-dominated network states. Together with

the current development of powerful new approaches

for the experimental interrogation of cortical networks

this progress provides a strong basis for discerning the

mode of operation of cortical networks with a balance of

theory and experiment.
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22. Piëch V, Li W, Reeke GN, Gilbert CD: Network model of top-
down influences on local gain and contextual interactions in
visual cortex. Proc Natl Acad Sci U S A 2013, 110:E4108-E4117.

23. Henry CA, Joshi S, Xing D, Shapley RM, Hawken MJ: Functional
characterization of the extraclassical receptive field in
macaque V1: contrast, orientation, and temporal dynamics. J
Neurosci 2013, 33:6230-6242.

24. Rangan AV, Young L-S: Emergent dynamics in a model of visual
cortex. J Comput Neurosci 2013, 35:155-167.

25. Stimberg M, Wimmer K, Martin R, Schwabe L, Mariño J,
Schummers J, Lyon DC, Sur M, Obermayer K: The operating
regime of local computations in primary visual cortex. Cereb
Cortex 2009, 19:2166-2180.

26. Persi E, Hansel D, Nowak L, Barone P, van Vreeswijk C: Power-
law input–output transfer functions explain the contrast-
response and tuning properties of neurons in visual cortex.
PLoS Comput Biol 2011:7.

27.
�

Ahmadian Y, Rubin DB, Miller KD: Analysis of the stabilized
supralinear network. Neural Comput 2013, 25:1994-2037.

Study of rate models that show a crossover from supralinear to sublinear
responses with increasing input strength. This crossover offers a novel
explanation for a broad set of normalization phenomena.

28. Carandini M, Heeger DJ: Normalization as a canonical neural
computation. Nat Rev Neurosci 2012, 13:51-62.

29.
��

Mongillo G, Hansel D, van Vreeswijk C: Bistability and
spatiotemporal irregularity in neuronal networks with
nonlinear synaptic transmission. Phys Rev Lett 2012,
108:158101.

The first self-consistent mean field theory of balanced networks with
dynamic synapses, exhibiting synaptic depression and facilitation. Dis-
tinct from classical models of the balanced state this construction can
support nonlinear effects such as multiple coexisting activity states.

30. Hansel D, Mato G: Short-term plasticity explains irregular
persistent activity in working memory tasks. J Neurosci 2013,
33:133-149.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0005
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0005
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0010
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0010
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0015
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0015
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0020
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0020
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0030
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0030
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0030
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0030
http://dx.doi.org/10.1177/1073858412456743
http://dx.doi.org/10.1177/1073858412456743
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0040
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0040
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0040
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0040
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0055
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0055
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0060
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0060
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0060
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0065
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0065
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0065
http://dx.doi.org/10.1038/nature11347
http://dx.doi.org/10.1038/nature11312
http://dx.doi.org/10.1038/nature11312
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0080
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0080
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0080
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0085
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0085
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0085
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0090
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0090
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0090
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0095
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0095
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0100
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0100
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0110
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0110
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0110
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0120
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0120
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0140
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0140
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0150
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0150
http://refhub.elsevier.com/S0959-4388(14)00032-4/sbref0150


Dynamical models of cortical circuits Wolf et al. 235
31. Van Hooser SD: Similarity and diversity in visual cortex: is there
a unifying theory of cortical computation? Neuroscientist 2007,
13:639-656.

32. Keil W, Kaschube M, Schnabel M, Kisvarday ZF, Lowel S,
Coppola DM, White LE, Wolf F: Response to comment on
‘universality in the evolution of orientation columns in the
visual cortex.’. Science 2012, 336:413.

33. Jia H, Rochefort NL, Chen X, Konnerth A: Dendritic organization
of sensory input to cortical neurons in vivo. Nature 2010,
464:1307-1312.

34. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ,
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